If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+64x+4032=0
a = -16; b = 64; c = +4032;
Δ = b2-4ac
Δ = 642-4·(-16)·4032
Δ = 262144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{262144}=512$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-512}{2*-16}=\frac{-576}{-32} =+18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+512}{2*-16}=\frac{448}{-32} =-14 $
| -5(6x-3)=-30+15 | | F(x)=7x+25/2 | | 4x=6-2x+48 | | N-21/2=4n | | 12x+2=41 | | (2x^2)/(9-x^2)=0 | | 2x^2/9-x^2=0 | | 7x-3(-3x-22)=194 | | 7x-3(-3-22)=194 | | (5x/6)-(3-x/8)=4x+3/12 | | 0.3x(0.03)= | | 3n/14=2/14 | | (7-3x)(10x-4)=0 | | x^2+x-12/x-3=7 | | 7q-q-1=17 | | 11^-2x=12 | | (10x-4)(7-3x)=0 | | b/17-4b/17=9/17 | | 11^2x=12 | | -14a+21=39-2a | | X^2+6x+8-35=0 | | 72.2=2•3.14•r | | 5x+6/5-x=0 | | 7n-12n+15=3 | | 2.9x+1.7-2.3x=3.5 | | 0.45(t+8)=0.6(t-3) | | 6m=0.96 | | 3/4x=-4=7+1/2x | | 4^2x=29 | | -96n=145 | | 3/4x-4+7=1/2x | | x^2−14x+40=0 |